两个累加符号∑如何计算,以及如何用python实现两个∑累加运算 | markdown下latex公式对齐

两个累加符号说明: ∑ ∑ \sum\sum


在看文章的时候有时候会看到有些公式有两个连续的 ∑ ∑ \sum\sum 符号,是不是有一点不知道如何计算,下面咱们就来盘一盘它!

1、下面我们先一个简单的例子开始介绍,如下公式:

f = ∑ i = 1 m ∑ j = 1 n = m ⋅ n f = \sum_{i=1}^{m}\sum_{j=1}^{n}=m\cdot{n} f=i=1mj=1n=mn

2、然后我们取m=3,n=4作为具体例子:

f = ∑ i = 1 m = 3 ∑ j = 1 n = 4 = m ⋅ n f = \sum_{i=1}^{m=3}\sum_{j=1}^{n=4}=m\cdot{n} f=i=1m=3j=1n=4=mn

3、具体就是如下,取到m和n的每个值的情况

-n=1n=2n=3n=4
m=1m=1,n=1m=1,n=2m=1,n=3m=1,n=4
m=2m=2,n=1m=2,n=2m=2,n=3m=2,n=4
m=3m=3,n=1m=3,n=2m=3,n=3m=3,n=4

4、当m=3,n=4的具体计算为:

f = m 1 ⋅ n 1 + m 1 ⋅ n 2 + m 1 ⋅ n 3 + m 1 ⋅ n 4 + m 2 ⋅ n 1 + m 2 ⋅ n 2 + m 2 ⋅ n 3 + m 2 ⋅ n 4 + m 3 ⋅ n 1 + m 3 ⋅ n 2 + m 3 ⋅ n 3 + m 3 ⋅ n 4 \begin{aligned} f &= m_1\cdot{n_1} + m_1\cdot{n_2} + m_1\cdot{n_3} + m_1\cdot{n_4}\\ & + m_2\cdot{n_1} + m_2\cdot{n_2} + m_2\cdot{n_3} + m_2\cdot{n_4}\\ &+m_3\cdot{n_1} + m_3\cdot{n_2} + m_3\cdot{n_3} + m_3\cdot{n_4}\\ \end{aligned} f=m1n1+m1n2+m1n3+m1n4+m2n1+m2n2+m2n3+m2n4+m3n1+m3n2+m3n3+m3n4

带入对应的值为:

f = 1 × 1 + 1 × 2 + 1 × 3 + 1 × 4 + 2 × 1 + 2 × 2 + 2 × 3 + 2 × 4 + 3 × 1 + 3 × 2 + 3 × 3 + 3 × 4 = \begin{aligned} f&=1 \times1+1\times2+1\times3+1\times4\\ &+2 \times1+2\times2+2\times3+2\times4\\ &+3 \times1+3\times2+3\times3+3\times4\\ &= \end{aligned} f=1×1+1×2+1×3+1×4+2×1+2×2+2×3+2×4+3×1+3×2+3×3+3×4=

5、其实就是两个for循环,如下是伪代码

f = 0
for i in m:
	for j in n:
		f = f+i*j

6、如下是用python实现上面的的实例

def cal_multiplication(m, n):
    f = 0
    for i in range(1, m+1):
        for j in range(1, n+1):
            f = f + i*j
    print("f =  \sum_{i=1}^{m=3}\sum_{j=1}^{n=4}=m\cdot{n} result: ", f)
    # f =  \sum_{i=1}^{m=3}\sum_{j=1}^{n=4}=m\cdot{n} result:  60
    return f

if __name__ == '__main__':
    cal_multiplication(m=3, n=4)

7、你甚至可以通过其他的计算工具来计算上面的值

推荐一个网站,特别强大:

在这里插入图片描述

你可以直接把要计算的公式的latex格式粘贴到输入框中,例如我的latex公式:\sum_{i=1}^{m}\sum_{j=1}^{n}=m\cdot{n},计算结果如下:

还有一个数学计算的网址,也很好用:

在这里插入图片描述


markdownlatex公式对齐

$$
\begin{aligned}
h(x) =&a+b\\
f(x) =& c+d
\end{aligned}
$$

h ( x ) = a + b f ( x ) = c + d \begin{aligned} h(x) =&a+b\\ f(x) =& c+d \end{aligned} h(x)=f(x)=a+bc+d

  • \\:代表换行
  • &:代表要对其的位置

参考:http://muchong.com/html/201812/13043365.html
参考

欢迎大家关注笔者,你的关注是我持续更博的最大动力


原创文章,转载告知,盗版必究

微信:suihailiang0816
QQ:931762054
wx公众号:仰望星空的小随
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页