探讨:COCO2017数据集中包含很多目标被标注为一个框bbox,是标注错误吗?

1 问题场景

由于COCO2017数据集具有:

  • 类别多样性,有80个类别
  • 数据集场景丰富
  • 数据集标注多样性,例如,在COCO2017的person类,只要出现人,无论是出现整个人,还是只出现人的脸、或只出现人的腿、或只出现人的一只脚都标注为person类

我的目的是从COCO2017数据集中提取包含指定类别的类,例如我只想提取包含person类别,其他标注的类别都不要,如下是我从COCO2017数据集中提取包含person的类别,包含person类别的数据集大概有6W多张图片

(base) shl@zhihui-mint:~/shl_res/3_data$ tree COCO2017_person/images/
COCO2017_person/images/
├── 000000000036.jpg
├── 000000000049.jpg
├── 000000000061.jpg
├── 000000000074.jpg
├── 000000000077.jpg
├── 000000000086.jpg
......

├── 000000581886.jpg
├── 000000581887.jpg
├── 000000581899.jpg
├── 000000581900.jpg
├── 000000581904.jpg
└── 000000581921.jpg

0 directories, 64113 files
(base) shl@zhihui-mint:~/shl_res/3_data$ 

2 使用labelImg查看COCO2017数据会出现很多目标被标注为一个框bbox

在使用labelImg查看COCO2017数据会出现很多目标被标注为一个框bbox,如下图,他会把一群人标注为一个大的bbox

在这里插入图片描述

在这里插入图片描述

我以为是我代码转化的有问题,但是我查看了标注的person框都是没有问题的,只有当人群特别密集的时候,才会出现把所有的人群标注一个大的bbox,因此我确定我转化的代码应该是没有问题的。我不太明白COCO数据集这么标注的意义,我个人理解这种标注可能会造成误检,但是我也没有实际测试过,欢迎大家讨论,或者你明白COCO数据集这么标注的原因,告知我,谢谢!

在这里插入图片描述

3 相关探讨

我在知乎上看到一个相关的回答,他们的讨论认为:

  • 密集的人群目标比较多,也比较小,如果图片像素也比较小,标注起来就很困难
  • 检测也比较困难,在检测的时候小目标本身特征就很少,检测就很困难,因此干脆就把人群检测为person,这样也能勉强接受吧!

欢迎大家继续探讨,留言

欢迎大家关注笔者,你的关注是我持续更博的最大动力


原创文章,转载告知,盗版必究

微信:suihailiang0816
QQ:931762054
wx公众号:仰望星空的小随
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页